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This article presents a class of optimum digital filters for digital phase locked loops of
the DSN Advanced Receiver. The filter minimizes a weighted combination of the variance
of the random component of the phase error and the sum square of the deterministic
dynamic component of phase error at the output of the numerically controlled oscillator
(NCO). By varying the weighting coefficient over a suitable range of values, a wide set of
filters are obtained such that, for any specified value of the equivalent loop-noise band-
width, there corresponds a unique filter in this class. This filter thus has the property of
having the best transient response over all possible filters of the same bandwidth and
type. The optimum filters are also evaluated in terms of their gain margin for stability and

their steady-state error performance.

l. Introduction

There has been an increasing interest (Refs. 1-4) in the
study of digital phase locked loops. Such an interest emerges
in part from the capability of digital technology which makes
it possible to control the loop parameters accurately and even
make these programmable and/or adaptive.

This article derives optimum filters for the digital phase
locked loops for carrier, subcarrier and symbol timing recovery
in the DSN Advanced Receiver. The loop is analyzed in the
z-transform domain so as to arrive at a set of optimum digital
filters for various input dynamics.
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The filter minimizes a weighted sum of the variance of the
random component of the phase error and the sum square of
the deterministic dynamic component of the phase error at the
output of the numerically controlled oscillator (NCO). By
varying the weighting coefficient over a suitable range of
values, a wide set of filters is obtained such that, for any
specified value of the equivalent loop noise bandwidth, there
corresponds a unique filter in this class. This filter thus has the
property of having the best transient response over all possible
filters of the same bandwidth and type.

Three specific filter sets optimum for a phase step, phase
ramp and the phase acceleration inputs are considered in some
detail. The corresponding optimum filters are type I, I1, and
II1, respectively. Due to the specific optimization index under
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consideration, the filter design also ensures that the determin-
istic dynamic component of the steady-state phase error is
zero for all input phase dynamics with the order of the highest
order nonzero derivative term smaller than the filter type.

The open loop transfer function (the product of the transfer
functions of the filter and the NCO) possesses a multiple pole
at z = 1, with its multiplicity equal to the order of the nonzero
phase derivative plus one. The type of the filter is the multi-
plicity of the pole at z = 1.

il. Optimum Filter

Figure 1 depicts the block diagram of the basic digital
phase locked loop (DPLL) and the z domain model of its
linearized version. In the figure, F(z) represents the transfer
function of the digital filter and N (z) is the transfer function
of the NCO and the transport lag in the loop, due to the
specific implementation. We use the N (z) appropriate for the
DSN Advanced Receiver (Ref. 2),

KT (z+1)

N(z) =
222 (z-1)

0y

where K is some constant and T is the sampling period. Such
an NCO transfer function results because of the limited loop
update rate /7. Similar results are possible for other N(z).

The input noise £(¢) is assumed to be a zero mean white
Gaussian noise with two-sided spectral density N, /2. The noise
n(t) is the real part of the complex envelope of £(r) and is also

white Gaussian with spectral density Ny

In Fig. 1(b) is given a linearized and discrete-time version of
the DPLL wherein {n(k)} represents a zero mean white
Gaussian sequence with variance (NO/AZT) In this model &
may be decomposed into a sum of :}/(k) and » (k) where
(k) represents the deterministic part of ® while n (k) is the
stochastic component. The optimum filter is der1ved by
minimization of the following index (Refs. 4, 5, 6):

Q=E[m@+\ Y @) )

k

with e(k) = ©(k) - Y (k) denoting the deterministic compo-
nent of the phase error. The parameter A is selected from the
consideration of the loop noise bandwidth and the transient
performance of the loop, which are functions of-A for the
optimum solution. In the sequel, the parameter A is expressed
in terms of N, T and an appropriate normalized parameter,
Thus, for example, when the input phase is a step function of
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time, A = IVOTq where g is the normalized parameter. The first
term in the index @ can be expressed in terms of the loop

filter F(z) as
1 dz
s fF %, 4 O 2 ®)

with <1>,,0,,0(z) denoting the noise spectral density of #,(k).
Now

E [} (k)] =

0,00 = HOHE)®,,0);
. F@NE)
HE) = TFoNG
@ Mo & N, = N.jA?
”t"i(z) e T’ 0 0

Similarly, the second term in Eq. (2) can be evaluated in
terms of the following contour integral (I' denotes the unit
circle),

200 = 5 [FoEeh £,
k r

where Z denotes z-transform. As E(z) = (1 -H(z)) ©(z) (where
©(z) denotes z-transform of 8(%)), an equivalent expression
for the sum of squared errors is

E(z)=Z[e(k)]

2.0 = 37 f 1 -HE) (1 -HE ) By L

k

D,@0) = OO “)

From Egs. (3) and (4), the optimization index @ may be
rewritten as,

1 -
¢ -5 fr D\, @)+ PE) WE) W)
AW Ny () - WG )N 1)y )]
H@) = WONG) P = N,T+32,,@] NONE™)
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The optimum solution for W(z) and thus H(z) can then be
obtained from the spectral factorization (Refs. 4, 5, 6) as

l:?\N(z_l)tbae(z):l
W) = : zP” (z) +
’ ) ’

P()=P(z) P (z)
(6a)

In the above P*(z) denotes that factor of P(z) which has all
its poles and zeros inside the unit circle, and |C(z)] , . for any
rational function C(z), represents that part of the partial
fraction expansion of C{z) whose poles are inside the unit
circle.

The optimum loop filter F(z) can then be obtained from
W, (z)as

W, (z)

FE) =12 W, ()N ()

(6b)

lll. Performance Considerations of
Optimum Filters

The optimum filters of the previous section are evaluated
in terms of various parameters of interest. The most signiti-
cant parameters are the loop noise bandwidth, transient error
performance, stability analysis and gain margin, and the
steady state phase error for an input having a nonzero deriva-
tive of order equal to the filter type.

A. Loop Noise Bandwidth

In terms of the filter performance, it is of interest to
evaluate the phase noise variance E[n(z)(k)] as the weighting
parameter A or its normalized version is varied. This variance
is given by Eq. (3) and is usually expressed in terms of a
normalized parameter B given by

B =
2 R

dz

H(z)yH(E™Y) - (7)

The parameter B is termed normalized loop noise bandwidth
and in terms of B, the oscillator phase noise variance is given
by (/VOB/T). In the PLL literature, a loop noise bandwidth
B, is also defined and equals (B/T) Hz.

B. Computation of B

From Ref. 7, the integral for B can be expressed in terms
of the coetficients of /(z). Let

byt +b 2" 44D
H(z) = ; a #0
az"+az" M+ 1y
0 1 n

where the coefficients a,0<r<mnandb,0<r<unarenot
necessarily nonzero. Then

Qv = u (&)

where §2 is an 7 X »n matrix and v and u are n-dimensional
vectors with the elements of £ and w being functions of the
coefticients a’s and b’s. Moreover, the first element of v
equals a,B: thus, B can be computed by solving the set of
n linear equations (8). In this regards, it is of interest to note
that the matrix £ can be decomposed as,

Q= 0,19, -9

where .. and Q  are upper triangular Toeplitz and
“upper triangular” Hankel matrices respectively ., i.e.

— —
a
4 4 a4 4 9,
0 aO 111 a2 an— 1
QUT - 0 0 aO al o an—2
0 0 0 0 a
0
(9)
4y 4 4, 44 9,
a, a, a; a, 0
Qup =4 4 4 4 0
a, 0O 0 0 0
- .-

and £2 has its first row equal to [ay @ a, -~ - a | with the
remaining rows identically equal to zero. The elements of the
vector u are expressed in terms of the autocorrelation function

of the sequence b, i.e..

n
a
R, (k)2 Y bp
=0

u" = [R,,(0)2R, (1) 2R, (n)]:

Hk
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With a slight modification, the solution for B can be ex-
pressed in the following form (possessing a rich structure for
computational purposes),

2. -
B = w X first element of {(Qy,,, + Qyp,) " &
(10)
= 4 T
u = [R,(OR,, (1) R, (n)]

The specific structure of the matrix in Eq. (10) can be
exploited in the fast computation of the bandwidth. Thus,
when the dimension of the matrix (Qpy + Qyy) is high,
sophisticated algorithms requiring order » log, n log, n opera-
tions can be used for solving Eq. (10).

C. Transient Performance

The transient performance of the filter is evaluated in

terms of the index
2 ®
P

where e(k) is the deterministic component of the phase
error. A smaller value of this index also implies a faster settling
of the dynamic component of the phase error to zero. In
principle, the value of this index can be reduced to an arbi-
trarily small value by choosing the value of the parameter
X sufficiently high. However, this would have the adverse
effect of increasing the loop noise bandwidth and degrading
the noise performance of the loop. The objective is thus to
arrive at a compromise solution, as in the following section.

D. Stability Analysis and Gain Margin

In the preceding derivation of the optimum filter, it is
assumed that the input signal amplitude 4 is constant (implic-
itly assumed to be 1). If the gain 4 is known then it can be
taken into account by dividing the constant of F(z) by A
However, in actual practice, there may be some uncertainty
associated with 4 or A may be a slowly varying function of
time. In such situations it is essential that the loop remain
stable for a sufficiently large range of 4.

In the subsequent section, using Jury’s criterion, the
upper and lower gain margins are evaluated for the closed loop
stability of the loop. Such an evaluation is particularly impor-
tant, since the filter derivation does not explicitly take into
account such an index.

E. Steady State Error Due to Higher Order Dynamics

In practice, the signal may possess a component with the
order of its highest nonzero derivative equal to or greater than
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the type of the filter. For example, the phase locked loop with
a type I filter may have a nonzero phase jerk at its input.
In this case, the deterministic component of the steady state
phase error is nonzero and it may be of interest to evaluate
the derived filter in terms of such steady state phase error

d)ss .

For analog phase locked loops (Refs. 5, 6) ¢ is inversely
proportional to Bi where i denotes the f11ter type and B, is
the actual loop noise bandwidth in Hz. As B, = B/T,a sultably
normalized parameter C, is given by C, = (¢>Ss)1/’ B/T, where
the order of the highest nonzero derlvatzve of the input signal
is assumed to be equal to 7. The variation of C_, is studied in a
subsequent section, as the normalized loop noise bandwidth B
varies over the range of interest.

IV. Performance Evaluation of the
Specific Filter Classes

In the following, we evaluate the parameters of the opti-
mum filter W (z) and the loop filter F(z) as the parameter
N is varied for the NCO transfer function given by Eq. (1).
The design of three specific classes of filters is considered to
correspond to a phase step, frequency step and a frequency
ramp input to the PLL. These filters are type I, II and III,
respectively. For each class of filters, various design curves
are obtained for the parameters and performance including
the normalized design parameter, the optimum loop gain,
the pole and zero locations of F(z), the upper and lower
gain margin for stability, and the steady state error constant
Cd>i’ as functions of the normalized loop noise bandwidth, B.
A. Optimum Filter for Phase Step (Type |)

In this case, the input phase function 8(¢) = u(z), the
unit step function, and thus ©(z) = (1 - z7!)7!. As shown
in the appendix, the optimum filter Wo(z) in this case is

given by
atb+c (z-1)z
W,(z) =
0 KT [(azz+bz+c)]

where ¢, b and ¢ must satisfy the set of following equations

ac = -1
ab+bec = q; q=NN,T (11)
A2+b*+c? = 2(1+q)

The optimum loop filter F(z) can then be obtained from
W,(z) in a straightforward manner and after a few manipula-
tions can be written as




(12)

2azt +2(b+a)z+(@+b+c)

From the computations of the pole-zero locations of F(z),
it turns out that the filter F'(z) possesses a pole at z = -1, i.e.,

az> +bz+c = (az+hb)(z+1) (132)
where @, b satisfy the following
ab = -1
_ _ (13b)
a>+b* = 2+q

Even though the pole at -1 is optimal, it is desirable to avoid a
pole-zero cancellation at z = -1 so as to avoid the practical
problem of imperfect pole cancellation and hence instability.
Therefore, the filter coefficients are modified so as to shift the
pole at the unit circle to z = -0.9 (say). Thus the factor (z + 1)
in Eq. (13a) is replaced by (z + 0.9) with corresponding
changes in Eq. (13b).

From Eqs. (1) and (12), the open loop transfer function for
the type I PLL is given by,

F@NG@) = K ¢*1) ;
OO e e )

= ath
K, =095 ( = ) (14)

Moreover, the corresponding closed loop transfer function of
the PLL is given by i

z+1
2 z(az? + bz +¢)

In this case, the normalized loop noise bandwidth B as evalu-
ated from Eq. (7) has the following closed-form expression.

_atb+e
-—7(/7—-5) (15)

L \&

1. Filter parameters. In the practice of phase locked
receiver design, it is customary to treat the normalized loop
noise bandwidth B as an independent parameter and then
express various other loop parameters and the performance
indices as functions of B. In the case of digital PLL, closed
form expressions of this form cannot possibly be derived. Thus
to obtain such relationships numerically, we evaluate c—z: b first
as a function of ¢ from the modified version of Eq. (13b).
(Actually for the case of computations, b and g are calculated
as a function of @ which can have values strictly greater than
1.) In this case, from the modified version of Eq. (13a), we
also note thata=a, b=5 +0.94, ¢ = 0.95.

In Fig. 2 is plotted the value of the parameter ¢ which is
required to obtain the normalized bandwidth B for the type I
PLL. As is apparent from the figure, corresponding to the
range of B between 0.001 and 0.95, the parameter g varies
over approximately 7 orders of magnitudes (107° to 10%).
To design an optimum type I filter of bandwidth B, one can
determine the loop gain from Fig. 3 and the pole locations
from Fig. 4.

2. Stability. From stability theory, the closed loop system
corresponding to the open loop transfer function of Eq. (14)
remains stable if K0 ¢ is replaced by any positive K<K Kopt:
However, if K is greater than K0 +» then the closed loop system
may become unstable. The maximum value of K for closed
loop stability, denoted K. is expressed in terms of the
upper gain margin G 4 20 Jog (K, max) t) (dB) and is plotted
versus B in Fig. 5. As may be mferred from the figure, for a
normalized loop noise bandwidth B less than or equal to 0.1,
the optimum filter yields an upper gain margin of 16 dB or

higher.

In Fig. 6(a) is plotted the root locus diagram for a typical
filter of type 1, corresponding to a nominal bandwidth of
0.0965. As the loop gain is varied around the optimum gain
Kopt, the normalized bandwidth B also varies around its
nominal value as depicted in Fig. 6(b).

3. Transient error performance. Figure 7 plots the integral
square error, given by Eq. (4) as a function of normalized
bandwidth. Over the bandwidth range of interest, the error
varies approximately by two orders of magnitude. Note that
some suboptimality is introduced due to modification of the
pole at z = -1.
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4. Steady state error due to phase ramp. The steady state
phase error is given by

1 z-1 1
O = Llinl ( z ) 1+ F(Z)N() 0@
@) = T =
(z-1)
or,
-t T
s T IM EDFONG

For the optimum filter (Eq. [14]) ¢, is given by

_ Sa+3btc _
% T SGarbro " Coi/PL

Figure 8 plots the normalized value of ¢ i.c., Cq,1 as a func-
tion of B. The radian phase error for radian center frequency
w, and the spacecraft velocity v is (wyv/c) (Cy, /B, ) where ¢
is the speed of light,

In Fig. 9 is plotted the location of the closed loop pole as
a function of B. As can be inferred from the figure, increasing
the value of B results in the movement of the pole towards
the origin, thus resulting in faster transient response.

5. Type I summary. Table 1 lists some of the parameters
of six typical filter corresponding to different values of ¢ for
quick reference.

B. Optimum Filter for Frequency Step (Type Il)
In this case, the input phase function 8 (¢) = t u(¢) and thus

Tz
B@E) = .
@) o1

The optimum filter W,(z) is derived in the appendix and is
given by

2 (hOZ“hl)(Z— l)Z

W(Z)= N
0 KT 4 (az® + bz* +cz +d)
where
hy = (Ta+5b+3c+d)
h, = (5a+3b+tc~d)
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and the parameters &, b, ¢, d are the solutions of the following
set of nonlinear equations.

ad = 1
actbd = -2
ab+bcted = r-1 \ (16)
a2 +br+e? +d* = 2r+4
0

Using the identity that (2 + b + ¢ + d)* = 4r, and after a
few algebraic manipulations, the corresponding loop filter is
given by

-2
F(z “XT

2
(hyz-h)z

[4az® + Ba +4b)z + (Sa+3b+c-d) (z-1)
17)
As in the case of phase-step, there is a pole-zero cancellation
at z = -1 in the filter F(z), i.e., the coefficients @, b, ¢, d
satisfy the following identity

az® +bz* +cz+d = (z+1) @z + bz +7¢)

where @, b, and ¢ satisfy the following set of equations

ac =1
ab+bc = -4 (18)
@+pr+c® = 6+r

The modified coefficients @, b, ¢, d are then obtained
according to the following relation

(a2 +bz? +cz+d)=(z +0.9) (az? + bz +¢)

1. Filter parameters. Figure 10 plots the normalized band-
width B versus the optimizations parameter #. Figures 11, 12,
and 13 plot the loop gain and those zeros and poles of the
optimum filter whose locations depend upon B. A compari-
son of these plots with the corresponding plots of type I
filter indicates that for low values of B, the pole locations are
nearly the same for both types. Similar remarks apply with
respect to loop gain.




2. Stability. The upper and lower gain margins are plotted
versus B in Fig. 14. An upper gain margin of 10 dB or higher
is obtained for all B less than 0.5, and the lower gain margin
is very large for all B less than 1.

3. Transient response. The transient response is given in
Fig. 15, Compared to the typel filter, the transient error
varies over a much higher range — approximately six orders of
magnitude. N

4. Steady state error to frequency ramp. In Fig. 16 is
plotted the normalized steady state phase error constant
Cop = (43;{2 B/T) for a unit frequency ramp input to the PLL.
A limiting value of just over 1 is approached for B less than
0.1. The radian phase error for radian center frequency W,
is (w, 4fc) (C¢2/BL)2 where @ is acceleration (in m/s? for
¢ in m/s).

C. Optimum Filter for Frequency Ramp (Type iil)

In this case

_T?2(z+1)

e
@ ==

and the optimum filter W, (2) is given by (the details similar
to the first two cases and omitted):

2 (G2 +(B-20)z+(A+C-Biz-1)
KT 16(az* +b23 + ¢z +dz + €)

W, =

(19)

and the loop filter transfer function F(z) is given by

Fe) = 2=

(C22 + (B - 20)z + (4 + C- B))2?
(z - 1)? {164z + 16(3a + b)z + [16(6a + 3b + ¢) - C] }

where
Z=8(a+b+c+d+e)
B = 4(9a+7h+5¢c+3d +e)
~ 20, (b+2c+3d +4e) :
C=2{Q2— @tbtctd+e) } > (20)
0, = (9a+7b+5c+3d+e)
3, = (33a+33b +29c +21d + 9e) )

The coefficients 4, b, ¢, d and e are obtained by equating the
coefficients of various powers of z on both sides of

z* +bz3 +cz? +dzte = (z+09)az® +bz2 +cz +d)

(21)
and _, Z—), E, d are obtained as a solution of the
ad =-1
ac+bd = 6
—— e (22)
ab+bc+ed = (15 -5)
e 3
P +b2+e2+d? =20+2; s = AT
Ny

1. Parameters of type III filter. The parameters of the
optimum filter, i.e., the loop gain, location of zeros and poles
(those depending upon B) are quite close to those for type 1
and II filters for B < 0.5. For B > 0.5 however, there is sig-
nificant difference in the location of poles. For space limita-
tions the plots of these parameters versus B are omitted.

2. Performance. The performance indices of the filters
are plotted in Figs. 17 through 19. As may be inferred from
Fig. 17, both upper and lower gain margins of 10dB or
higher are achieved for normal regions of operation. The
dynamic error (Fig. 18) has an extremely large range (about
12 orders of magnitude) for the range of B of interest. This
suggests a programmable implementation of the PLL for fast
acquisition as is discussed below. In Fig. 19 is plotted the
normalized steady state phase error constant Cyy = ¢‘S/s3 B/T.
For low values of B, this has a value of approximately 1.5.
?a;iiggl phase error is (w_j/c) (C¢3/BL)3 where j is jerk
m/s%). '

V. Programmable and Adaptive
Implementations

From the performance analysis of the optimum filters
the following adaptive implementations are suggested.

The phase noise variance at the output of the NCO is given
by (V,B/A*T). Thus in those situations where (4%/N,) (the
input signal power to noise spectral density) is slowly varying
with time, in order to maintain the phase noise variance within
specified limit, say Vo @ value is obtained from B = V nax
T(4? /Ny). Then from the plots of the filter parameters
(stored in the memory in the form of tables versus B) an
optimum filter corresponding to B is obtained. This filter
then also has the best transient response consistent with the
desired phase variance.
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Because the transient error varies over an extremely large
range (about 12 orders of magnitude for type III filter), a
rapid acquisition can be attained in the following manner.
Starting with a sufficiently high value of B (thus very rapid
settling of the loop), the loop parameters are adjusted, at an
interval of several times the dominant time constant of the
filter, to the values corresponding to successive lower values of
B until the desired value of B is achieved.

As the filter poles location are not sensitive to the input
dynamics, a serial implementation of the filter is suggested.
Acquisition can be accomplished with a type II loop, which
has a good transient response, and then the type can be
increased by type III by adding a pole at z = 1. The feasibil-
ity of acquisition with the type 11 loop depends upon an esti-
mate (upper bound) of the magnitude of the acceleration.

VL. Conclusions

The performance of a class of optimum filters for three
different input phase dynamics has been evaluated. The filters
achieve minimum transient error for any loop bandwidth.
The optimum filter is such that the open loop transfer func-

tion has multiple poles at z = 1 with the multiplicity 7 equal
to one plus the number of nonzero derivatives (¢ > 0) terms
of the input. In addition the filter has an optimum compen-
sator with its denominator polynomial of degree 2 and the
degree of numerator polynomial equal to m.

The parameters of the optimum compensator have been
obtained as a function of an optimizing parameter q. Increas-
ing the value of g has the effect of weighing more heavily the
deterministic component of the phase error. This has the
effect of achieving smaller transient error by increasing the
loop gain, placing the open-loop poles closer to the unit circle
and the filter zeros close to the origin. Alternatively, higher
values of g bring the poles of the closed-loop system closer to
the origin. Such a behavior of the system may be very desir-
able during the acquisition phase of the loop. Thus, in an
adaptive implementation, a loop filter corresponding to high
values of ¢ may be used during the acquisition phase. During
the tracking phase then a filter corresponding to a lower
value of ¢ may be switched in.

The filters designed on this basis also have good margin
against possible variations in the received signal power level.
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Table 1. Performance of optimum fliters (type [) corresponding to different values of the parameter gq

Optimum Optimum Range of Gain Bandwidth Over
q Loop Gain Loop Loop Transfer Function K for Margin 412 dB Gain
K Optimum Noise BW Stability indB Variation
0.0364 0.1649 0.0965 2 z+1 0.002 - 1.091 -38,16.4 0.018 - 0.945
(z~1)(z" +1.07362z + 0.1649)
0.1344 0.2903 0.1786 3 z+1 0.002 -1.204 —43,1235 0.034-1.2
(z-1)(z" +1.2056z +0.2903)
0.4702 .0.4653 0.3189 3 z*1 0.002 -1.380 —47,9.66 0.11 -1.35*
(z-1)(z° +1.390z + 0.4653)
1.548 0.6568 0.5140 3 zt1 0.002 - 1.60 -50,7.73 0,17 —-3.8*
(z-1) (" +1.5914z +0.6568)
10.33 0.8724 0.8127 2 z+1 0.002 - 1.805 -52.8,6.31 0.25 - 18.*
(z~1)(z" +1.8184z + 0.8724)
180.2 0.9448 0.9401 21 0.002 -1.88 -53.5,6.0 0.30 -38.*

(z ~1) (z2 + 1.8945z + 0.9448)

*Entries correspond to +6 dB gain variation.
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Appendix

In the following, we derive the transfer functions of the
optimum filters for various phase dynamics considered in the
article.

l. Case 1: Phase Step

In this case ®(z) = (1 -z~1)"1, and the expression for P(z)
can be easily evaluated as,
1- &
(z-1)°

K21-\f0T3 2t —q® -2l +q)z-qz+1
4 z-1)*

i

P(z)

KZJ\—IOTa (z+1)?
4  (z-1)> X

(A-1)
Factorization of P(z) yields,

1<2N0T3 (az® + bz +¢) az? +bzl +e
P(z) = { T P X _.—_-—-(z_l e

(A-2)

where the two bracketed terms in the above represent P*(z)
and P~(z) respectively. Comparing the coefficients of equal
powers of z in the equivalent expressions (A-1) and (A-2),
the following set of equations (referred to above as Eq. {11])
are obtained.

ac = -1
ab+bc = ¢q
a2 +b2+c? = 2(1+q)

The above set of equations can then be solved for unknown
a,b,c.

Now,

AV (@) g (2) _ AT (z +1)z%
zP™(z) 2 (z-1)a+bz+cz?)

Writing down the partial fraction expansion for the above

[)\N(z‘l)cb@ @(z)] KT 2/(@+b+e)

ZP™(2) 2 (z-1)
(A-3)
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This is in view of definition of [ ], and the fact that the roots
of @ + bz + ¢z? = ( are outside the unit circle. Substitution of
Eq. (A-3) and the expression for P~(z) from Eq. (A-2) into
Eq. (6) yields the following expression for W,(z),

4q 1 z(z - 1)

w = —
O(Z) (at+tb+c) KT(az2 + bz +¢)

From Eq. (7) and the expansion for (¢ + & + ¢)?, it follows
that (¢ + b + ¢)? = 4q, and the expression for W(z) can be
simplified to the one given in Section 1V,
Straightforward substitution yields that,
1-W,(z)N()

_ 2az’ +2bz" + (c-a-b)z-(a+b+c)
2z(az? + bz +¢)

and the optimum loop filter is given by

_ W, ()
FO = T ove
z2(z - 1)
2023 +2b22 +(c-a~b)z-(@a+b+c)

- 2@tbtc)
KT

Cancellation of the factor (z - 1) common to both the numer-
ator and denominator yields Eq. (12).

ll. Case 2. Frequency Step
In this case ©(z) = Tz/(z - 1)?, and the P(z) is given by

KN 713 2 2
P(Z) = - 40 £Z—+_]l. 1+r z ; y = _3_\\__[1‘
(z~1) -1 0
2 3
_ _K NOT
4

X (2°-225+(r -1 +Qr+4) +(r =122 -2z + 1}
@-1°




Factorization of P(z) results in

P@) = K2N0T3 azd +bz? +ez +d
z 4 (2_1)3

(az"3 +pz% 4ozt +al

" @' -1)° ;

(A-4)

where the factors of P(z) above represent P*(z) and P (z)
respectively. Comparison of the two alternative expressions
yields the following set of equations for the solution of a, b,
cand d.

ad =1
actbd = -2
(A-5)
ab+bcted = (r-1)
A2+t +d? = Qr+4)
Now,
ANGE @ ()
Y@e) & —— 22~
zP (2)

s 1)z° 1 (A-6)

z-1? (a+bz+cz? +dz?)

Writing down the partial fraction expansion of the above
rational function of z and recognizing that the roots of
a+ bz +cz? + dz3 =0 lie outside the unit circle,

l:xzv(z-l)%@(z)] __A4_, B

z2P7(2) z-1? (-1 !
3
A =(z~ 1)2 Y(2) 5 = *(-tz—;%l—(_i—_z‘m

_ AKT?® (7a+5b+3c+d)

=1 2 (@tbtc+ad)

B = iz G -1)? Y()

Substitution of 4 and B, and a little simplification yields,

_AKT? 1

(Y@, =
2 (@a+b+c+d?

1.

X {(Ta+5b+3c+d)z -(5a+3b+c-d)}
(z-1)?

(A7)

Substitution of Eq. (A-7) and the expression for P~(z) from
Eq. (A4) into Eq. (6) provides an expression for the optimum
close loop filter W (2),

{AT\{ 2
W@ = () x)
0
« 1 (hyz =h )z ~1)z ;

(@+b+ct+d)? (az® +b2% +cz +d)
hy = (7Ta+5b +3c+d).
h, = (Ba+3b+c-d)

From Eq. (A-5) and the expansion for (z + b + ¢ +d)?, it fol-
lows that (2 + b + ¢ + d)? = 4r. Substitution of this in the
above leads to the expression for W, (z) given in Section IV.

Straightforward substitution yields the optimum loop fil-
ter F(z) as,

F(7) = 1—{—2;

(hyz~h)(z-1) 22
X
4az* + 4z + (dc - hy)z* +(4d - hy +h )z +h

Factorization of the denominator polynomial and cancelling
the factor (z - 1) common to both the numerator and denomi-
nator,

2
F(z) = I—f_T—

2
(hyz ~h )z

(z -1) {42z + (8a +4b)z + (5a + 3b + ¢ - d)}
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Solution of the Filter Coefficients a, b, c, d. For any given
value of r, the system of simultaneous non-inear equations,
Eq. (A-5) must be solved for a, b, ¢ and d. In fact, as discussed
earlier, it is sufficient to solve the set (18) for a, b, ¢ first and
then obtain a, b, ¢, and d from

a=a
b=5b+09a
c=¢+09¢
d=09¢
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It turns out from the stability considerations that |a| >
|| and without loss of any generality we may assume @ > 0.
Thus, to satisfy the first equation of (18),a > 1. Since we are
interested in solving the set (18) for a range of values of 7, an
equivalent but simpler approach is to assume a range of 7 and
then solve for b, ¢, and 7 from the following:

¢

|

It

l/a
-4/(Z+¢)

(@* + 52 +c2 - 6)!/2




